Normed Convergence Property for Hypergroups Admitting An Invariant Measure
نویسندگان
چکیده
منابع مشابه
Countable Infinitary Theories Admitting an Invariant Measure
Let L be a countable language. We characterize, in terms of definable closure, those countable theories Σ of Lω1,ω(L) for which there exists an S∞-invariant probability measure on the collection of models of Σ with underlying set N. Restricting to Lω,ω(L), this answers an open question of Gaifman from 1964, via a translation between S∞-invariant measures and Gaifman’s symmetric measure-models w...
متن کاملA classification of orbits admitting a unique invariant measure
We consider the space of countable structures with fixed underlying set in a given countable language. We show that the number of ergodic probability measures on this space that are S∞-invariant and concentrated on a single isomorphism class must be zero, or one, or continuum. Further, such an isomorphism class admits a unique S∞-invariant probability measure precisely when the structure is hig...
متن کاملNONINVERTIBLE TRANSFORMATIONS ADMITTING NO ABSOLUTELY CONTINUOUS ct-FINITE INVARIANT MEASURE
We study a family of H-to-1 conservative ergodic endomorphisms which we will show to admit no rj-finite absolutely continuous invariant measure. We exhibit recurrent measures for these transformations and study their ratio sets; the examples can be realized as C°° endomorphisms of the 2-torus.
متن کاملTranslation invariant mappings on KPC-hypergroups
In this paper, we give an extension of the Wendel's theorem on KPC-hypergroups. We also show that every translation invariant mapping is corresponding with a unique positive measure on the KPC-hypergroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Southeast Asian Bulletin of Mathematics
سال: 2003
ISSN: 0129-2021,0219-175X
DOI: 10.1007/s10012-002-0479-9